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Abstract
This article presents an overview of how an internal hedging desk can
calculate fair prices to charge for internally holding and then offloading
short-term positions in risky assets. It then describes how market-neutral
making or taking strategies can use these hedging desk prices to inform
what trades it should do. Throughout, it uses the concept of utility func-
tions to quantify the cost of volatility.

1 Utility functions

1.1 Definition

Different people have different ideas about how much variance they are willing
to accept in their future wealth for higher expected returns. This is known as
their subjective risk-aversion. For example, if forced to choose between two real
random variables X; or X5 to set their total wealth equal to, different peo-
ple, even behaving completely rationally, may choose different variables. More
concretely, if X; is a constant equal to 100, and X5 ~ A/(110,20%), a more
risk-averse person would prefer X, while a less risk-averse person would prefer
Xo.

Risk-aversion seems on the surface very difficult to quantify in a way that
covers all the choices humans may make between any two arbitrary distribu-
tions representing their wealth. Thankfully in their 1947 seminal work, von
Neumann and Morgenstern essentially solved this problem. They proved the
von Neumann-Morgenstern utility theorem, which states that assuming four
very weak “rationality” assumptions, then every agent (i.e. person, entity or
thing making risk-aversion judgements) has a utility function U(x). Its choices
are always based on maximising E(U(X)) over the different X it can choose
from.|2| In other words, if an agent is behaving rationally and consistently, then
it must have some utility function U(z) and every choice it makes between dif-
ferent distributions for its wealth must just be it choosing the distribution X
which maximises E(U(X)).
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We can further stipulate that in a choice between two constants, agents
will always choose the larger constant for their wealth. Hence if = > y, then
U(x) =E(U(x)) > E(U(y)) = U(y). In other words, U must be an increasing
function. Secondly, we can stipulate that for the same expected value, agents
prefer certainty over uncertainty, and so they will always prefer their wealth to
be a constant pa + (1 —p)b, compared to having a probability p of being a and a
probability 1 —p of being b. Thus U(pa+ (1 —p)b) > pU(a)+ (1 —p)U(b), which
by definition means U must be concave. Assuming U is twice differentiable, we
can simplify these stipulations to just U’(z) > 0 and U”(x) < 0 for all x.

1.2 Common utility functions

Someone with no risk-aversion at all will simply always maximise their expected
value regardless of variance. If expected values are equal, then they will have no
preference between lower or higher variance. This is represented by the utility
function U(z) = z. Actually, it can be represented by any utility function of
the form U(x) = Ax + B with A > 0 — these are all equivalent. In general,
utility functions do not change behaviour under addition by a constant and
multiplication by a positive constant, since E(AU(X) 4+ B) = AE(U(X)) + B;
maximising E(AU(X) + B)) is the same as maximising E(U(X)).

The concavity of the utility function at any point represents in some sense
how risk-averse someone is at that level of wealth, and in the case of U(x) = =,
indeed U”(z) = 0. The Arrrow-Pratt absolute risk-aversion coefficient, meant
to encapsulate this idea of risk-aversion at a certain point, is defined as

Auns() = ‘UU(S)”) (1)

[1)[3]. Note that the Arrow-Pratt absolute risk-aversion coefficient is invariant

under addition by a constant and multiplication by a positive constant. There
is also the Arrow-Pratt relative risk-aversion coefficient defined as:

—zU" (2)

Arel(aj) = UI(ZIT) )

(2)
which also has the feature that it is invariant under multiplicaton and addition
of the utility function by a constant, but now is also dimensionless to the units
of = (it doesn’t make a difference if wealth is measured in Dollars, Pounds or
Euros).

If we assume that a utility function has constant absolute risk-aversion
(CARA), then we are forced to have utility functions of the form U(z) = —e=**
up to equivalence for some ¢ > OE| If we assume that a utility function has con-
stant relative risk-aversion (CRRA), then we are forced to have utility functions
of the form U(x) = +2¢ for some C < 1E| or U(x) = log(z) up to equivalence.

INot inclding A,ps(x) = 0, where U(z) = = up to equivalence
2The = sign is there to make the function increasing.



1.3 Application to High-Frequency Trading

A high-frequency trading firm will have some concept of wealth (which can be
defined to be its total net assets) and will be making expected-value/variance
trade-offs every second. Von Neumann-Morgenstern states that (if it is being
run rationally and consistently), it must be maximising some expected utility
on its total net assets. A common misconception is that trading firms have
no risk-aversion and are only trying to maximise expected value (U(x) = x),
however that would mean that the company should take infinitely sized positive
expected-value bets and never hedge. Unfortunately, without an infinite balance
sheet, this can only end badlyEI

What that utility function specifically should be can be a decision left to
the stakeholders of the company and all of the discussion below is applicable
to all choices of utility function. However, out of all the commonly used utility
functions, one stands out as being particularly ubiquitous. That is the CRRA
function U(z) = log(x). It is the only CARA/CRRA function with the proper-
ties of:

ili% U(z) = —o0, and xll)n;o U(z) = oo. (3)
This means that a net assets of 0 should be treated as infinitely bad (indeed,
typically meaning the company has very little future left), and that the utility is
unbounded in the positive direction, meaning there is always significantly more
expected utility to be gained.

However, utility functions were originally conceptualised to help think about
trades taken over a fixed time period with risky assets being marked to market
at the end of the time period. This is clearly not a good assumption in high-
frequency trading, where trades are taken at any time, whenever desired. Thus
more care needs to be taken in how utility functions are used which will be
decsribed later on.

2 Hedging Desk Behaviour
2.1 Definition

We describe a high-frequency trading set-up as follows. There is a central inter-
nal hedging desk which, for every risky asset traded and for all volumes, quotes
an internal bid/ask. Every single high-frequency making/taking strategy must
immediately (market) trade against the internal hedging desk whenever it re-
ceives a net exposure to any risky asset. A trade’s profit can be precisely defined
by the net cash flow in executing a trade including fees and immediately market
trading any exposures against the internal hedging desk. As can be expected,
the goal of a making/taking strategy is to maximise the sum of profits across
all the trades it executes.

The internal hedging desk, on the other hand, doesn’t try to maximise its
own profits. Instead, its purpose is to provide as tight as spreads as possible to
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all of the making/taking strategies while ensuring that it charges enough spread
to compensate for the variance in price of the risky assets that it holds. The
internal hedging desk doesn’t actually execute any external trades but merely
quotes internal prices in such a way as to encourage making/taking strategies
to make offsetting trades where appropriate.

2.2 Uncertainty from the strategy’s perspective

The making/taking strategy faces risk with any trade it executes that the in-
ternal hedging desk price may change in the time it takes to receive notice from
the exchange of the trade going through and passing on the exposure to the
heding desk. For a maker trade, this would be the time between the last point a
limit order could’ve been cancelled for a trade not to go through, and the time
the hedging desk receives the trade. For a taker trade, this would simply be
the time between sending the order and the time the hedging desk receives the
trade.

For the sake of simplicity, let us consider a risky asset XYZ, whose mid-price
follows a geometric Brownian Motion, and so, its mid-price M (t) is given by the
equation

2
o
M(t)Moexp<(,u2)t+aBt>, (4)
where B; is a Brownian Motion. We can further assume that we are working in
a risk-neutral probability space and so g = 0, giving us

Ai@)zﬂﬂﬂmp(—i?-%oBo. (5)

Then, if we say that our internal hedging desk bid for a volume V of XYZ at
time ¢ is B(V,t). We decompose this bid as follows:

B(V,t) = M(t)e 9V, (6)

where C(V,t) is the credits of the hedging desk bid for volume V and time ¢. If
a taker strategy sends a fill or kill buy for XYZ at time ¢ for a volume V, price
m, and then the hedging desk receives a confirmation of the trade at time ¢’, the
strategy’s profit P can be written as follows:

P=V x(B(V,t')—m) (7)
:Vx@i —CWit) _ ) (8)
=V x (M@E)e OV M()e VO 4+ M()e OV — ) (9)
=Vx@ﬂﬂ€aW)—M@gaW0+%, (10)

where Py is the profit that the strategy sees/predicts at the time ¢ (when the
taker trade is sent). For the sake of simplicity, we assume that C(V,t') = C(V,t),



which is a fair assumption if the internal hedging desk doesn’t suddenly have
significant changes in XYZ exposure or predictions around market volatility in the
timeframe between ¢ and ¢’. A more detailed analysis can be done by considering
changes in C(V,t) over this short timeframe. Using this assumption, the profit
P becomes

P=Ve CWO(M®E#) — M(t)) + Py (11)

—CVit) a*(t' —t)
=Ve M) | exp B +0(By—By) | —1)+F (12)

a2t —t)
=VB(V.t) (exp ( ——5—= + oV’ —iZ) ~ 1) + R, (13)
where Z is a standard normal distribution. Thus:
P— PR a2t —t) 5,

——— + 1 ~ Log-N 1| —— =) ® 14
VBV + og-Norma, < 5 o ( ) (14)

This precisely defines the distribution of profits expected based on the size
of the trade V, the initial seen hedging desk bid B(V,t), the volatility of the
underlying asset o and the time taken from sending the trade to the hedging
desk receiving confirmation ¢’ — ¢t. We can thus calculate that the following
statistics for P at time t:

E(P) = P, (15)
Var(P) = V2B(V, )2 (effz(t’-t) - 1) . (16)

We use this information to figure out if a given trade is worth doing or not
based on a specified utility function and current net-assets. Say that a trading
firm’s current net-assets is given by Xy. Then the trade is worth doing, if at
time ¢, E(U(Xo + P)) > E(U(Xy)). For a log utility function, that corresponds
to:

E(log(Xo + P)) > log(Xo) (17)

log(Xo) + E (log (1 + ;)) > log(Xo) (18)
E (log (1 + )}:0)) > 0. (19)

(20)

This can be calculated via numerical integration for the P as specified in Equa-
tion to yield a result of whether a trade is worth doing based on Xy, o, t' —t,
Py, VB(V,t). In general, we can see that as X, grows, we are more willing to
do riskier trades so long as the expected value is positive.

4Using the notation Log-Normal(u, o2).



Note that in this subsection, we have made some key assumptions. These
include, the mid-price being a geometric Brownian Motion with no drift; con-
stant hedging desk credits between ¢ and ¢; only considering Fill or Kill orders;
knowing ¢’ —t before the trade takes place; and most incorrectly, the lack of any
adverse selection. We will work on dropping or improving these assumptions
later on.

2.3 Uncertainty from the hedging desk’s perspective

A hedging desk faces uncertainty from having exposure to risky assets. The
hedging desk only locks in profit after buying a risky asset and then selling the
risky asset or vice versa. In the time between those trades, it faces exposure to
the risky asset. The longer the time is between the position-increasing trade,
and the position-decreasing trade, the greater the risk it faces. We consider
the hedging desk to be a first-in, first-out (FIFO) queue, where each position-
decreasing trade hedges against the oldest position-increasing trade still in the
queue.

Let us say that our hedging desk currently has a position in XYZ of +A (long)
and trades the asset XYZ at a rate 27"E| If we assume a symmetrical flow of buys
and sells, then hedging trades of XYZ take place at a rate of r. If the hedging
desks further buys an extra V' amount of XYZ, then that new trade will take an
average time of approximately 2‘4;;‘/ to hedge. That is calculated from the fact
that it must hedge all of its initial +A position (the hedging desk is a FIFO
queue) which takes time é, and then it begins hedging the V amount of XYZ
which completes after % Note that the average time to hedge the trade isn’t
the same as the time taken to hedge the entire amount V', but rather the time
taken to hedge half of the amount V. Because it is a FIFO queue, it doesn’t
matter if more buy trades take place before hedging has finished, since those
trades will just go behind this one.

We work out how much credit to charge for hedging this trade V based on

the distribution of M (¢ + Q‘L‘ij) given by:

M(t+2A+V>—M(t)exp<a2(2A+V)+a 2A+Vz>, (21)

4r 2r

where Z is a standard normal variable. We define the profit from the trade to
be as follows:

P-V (M <t + 2‘4; V) —exp(=C(V, t))M(t)) (22)

0_2
P=VM(®) (exp (—(22‘:‘/) to 2‘4; VZ) —exp(—C(V, t))) . (23)

5Trade rate can have units of dollars per hour, for example.



from which we can calculate the following statistics for the profit of a hedging
desk trade:

E(P) = VM(t)(1 — exp(—=C(V.1))) (24)
Var(P) = VM (t)?2 <exp (W) - 1) . (25)

As expected, the expected profit increases with larger credits, and the variance
in profit increases with larger initial position A and volume of trade V', while the
variance decreases with larger hedge rate r. As before, we can see whether such a
trade is worth doing based on our utility function framework if E(U (X, + P)) >
E(U(Xo)), which for a log utility function corresponds to:

E(log(Xo + P)) > log(Xo) (26)

E (log (1 + ;)) >0, (27)

which can once again be calculated via numerical integration. However, in the
case of a hedging desk, our goal is to quote prices as tight as possible without
losing expected utility, in order to best facilitate the strategies’ trading. Thus,
in this case, C'(V,t) should be chosen to force equality in Equation

In this subsection so far, we have only described the statistics around a
position-increasing trade, however, what should we make of a trade that reduces
our risk? Once again, let us assume that our current position is +A (long)
and we make a trade this time to sell V' (V' < A) units of XYZ at a price of
M (t)e®V:H). The credits C(V,t) should be chosen so that our expected utility
is equal before and after the trade. This leads to the equation:

E(log <X0+AM <t+ %))) :E(log<X0+VM(t)cc+(A—V)M (t+A2;V)>> (28)
E (log <1+ XAOM (t+ %))) =E <log <1+ VX—E:M(t)+ A);OVM (t+ A;TV>>) . (29)

where X is the net assets not including XYZ, and

o2t

M(t+ At) = M (t) exp (— + JAtZ> , (30)
with Z once again a standard normal random variable.

Note that our expected utility logic naturally discounts the value of risky
assets held by the hedging desk. This creates natural “skewing” behaviour
whereby if the hedging desk is significantly long a risky assset, its bids will
have large credits, while its offers will have small or negative credit. And since
strategies make trades based on the prices quoted by the hedging desk, this will
lead to strategies naturally skewing their bids and offers based on the heding
desk’s exposure. No extraneous skewing logic needs to be implemented if your
trading is based on proper risk-discounted valuations for risky-assets, as we have
described above.



Once again, we need to point out important assumptions in the model de-
scribed in this subsection. These are the fact that the mid-price is a geometric
Brownian Motion with no drift; hedging takes place at a constant rate r; treat-
ing the entire trade volume as being hedged at its “median” hedge time; and
once again, most incorrectly, no adverse selection.

3 Implementing Expected Utility

3.1 Taylor Approximations

Above, we’ve made passing references to using numerical integration to work
out values for expected utilities. While that is the only way (for most utility
functions) to come to a highly accurate result, in a high-frequency trading sce-
nario, a much quicker although imprecise method is necessary. The solution to
this is to use Taylor’s Theorem to approximate our utility functions as small
order polynomials. The smaller the size of the trade in question, the more ac-
curate these approximations will be, and the fewer terms you’ll need to still get
an accurate result.

Specifically focusing on a log utlity function, we often see an expression of
the form

E(log(Xo+Y)) =log(Xo) + E (log (1 + ;)) , (31)

where Y is some random variable involving a trade and Xy is a constant repre-
senting our net assets. The second term on the right hand side of Equation
can be Taylor expanded as follows:

E <log (1 + )2)) N XLOE(Y) +0 G(;) (32)
XLOE(Y) — 2)1(8113 (Y?)+o0 (2) (33)
-y El e, 30

with convergence if |Y| < | X,| almost surelyﬂ

The first-order approximation in Equation |32| involves only considering the
expected value of Y. In general, this is the justifcation for why many trading-
firms see themselves as solely in the business of maximising expected value
— that is what they are doing, though only to a first order approximation.
Another way to think about this, is that if you zoom in close enough to any
(differentiable) utility function at any point, it will just look like a straight
line — no risk-aversion and solely maximising expected value. The second-
order approximation in Equation [33] has the same expected-value term, but now

6The proof of this statement follows from Fubini’s Theorem. The details are left as an
exercise to the reader.



subtracts that by a variance term. Indeed, the larger the variance is relative
to Xp, the greater this risk-discounting effect is. In general, each term in the
Taylor expansion just involve higher and higher moments of Y, which are usually
analytically known.

3.2 Defining “net assets”

Throughout, we've made reference to this value Xy and defined it as the net
assets of the trading firm at any point in time. In our context, that is actually an
ambiguous definition, since at any point in time, a company may have exposures
to a wide variety of risky assets. The entire basis of our system involves not
marking risky assets to market, but rather to mark them to their “expected
utility” at the predicted time that they get hedged. The net assets value should
represent the expected utility of assets if they are diligently passively liquidated,
with no time-pressure, which certainly isn’t mark-to-market.
Based on this rationale, we propose the following definition for Xj:

Xo := exp (]E <log (Z Ay M, (ta)> )) , (35)
a€ER

where R is the set of all assets, A, is the exposure to asset a, t, is the expected
hedge time for the current position in a, and M,(7) is the mid-price of asset a
at time 7. Using the assumptions about hedging rates as in Subsection we
see this can be written as:

Xo(t) = exp <IE <log (Z A,M, (t + ;:f )))) , (36)

a€ER

where 7, is the hedging rate of asset a. Further applying the drift-free Brownian
Motion assumption, this turns the equations into:

Xo(t) = exp <]E (log (Z Ay M, (t) exp (_I‘Z;Ug + 04 ?Z)))) , (37)

a€ER

where o, is the volatility of asset ¢ and Z is a standard normal random variable.

Note that if our exposure was only to one or more non-risky assets (e.g.
USD if that is what profit is measured in), then we return to the conventional
definition of net assets being just the sum of all asset exposures. That is the
reason that we need to take the exponential at the start of the expression. We
also note that in all of the discussion above, the conditions for whether trades
were worth making or not are precisely equivalent to whether the trade increases
this specific definition of Xj.



4 Assumption Busting

4.1 Brownian Motion

A very natural assumption to bust is the idea that the Brownian Motion for
the mid-price of an asset has constant volatility o. Instead, we can say that the
volatility is function of time and so

th = O'(t)dBt, (38)

where M is the mid-price and B is a standard Brownian Motion (with volatility
1). This o(t) can be fit in wide variety of ways. For example, we may try
to fit the volatility to periodic functions with periods over a day (to model
how volatility changes at different times of the day) and over a week (to model
how volatility changes on different different days of the week). The volatility
can also be based on very recent low-latency observations of market-wide and
asset-specific volatility.

4.2 Constants r and t' — ¢

The rate at which hedging trades take place clearly isn’t constant and depend
on wide variety of factors, including the periodic factors mentioned for volatility.
This can be modelled and fit based on historical trading. Another factor that will
affect rate of hedging r is the amount of inventory of a certain token available.
Once we start running low on inventory, r should rapidly tend towards 0.

The time between sending an order and the hedging desk hearing a confir-
mation has a very large variance. However, again this can be modelled based
on historical data as a log-normal variable. Then for every expression involving
t' —t, we can simply take the expected value averaging over the distribution of
t—t.

4.3 No adverse selection

In order to model adverse selection, we have to build on top of the model given
in Equation by adding a negative drift term and an increased variance term.
Thus in a short period of time immediately after a trade on a certain exchange
FE, takes place, the mid-price follows the stochastic process:

dM; = ppdt + (o(t) + xp)dB, (39)

where pp < 0 and kg > 0 can be fitted according to historical observations. In
fact, the “short period of time” description can also be fitted so that the ug and
kg decay exponentially to 0 as time after the trade increases, with exponential
half-life 7.
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